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Abstract

Personal protective equipment (PPE) stockpiles in the United States were established to facilitate 

rapid deployment of medical assets to sites affected by public health emergencies. Large quantities 

of PPE were introduced into US stockpiles because of the need to protect healthcare and other 

professionals during these events. Because most stockpiled PPE was acquired during, or 

immediately following, large-scale public health events, such as pandemic influenza planning 

(2005-2008), SARS (2003), H1N1 (2009-10), and Ebola (2014-15), aging PPE poses a significant 

problem. PPE such as N95 filtering face piece respirators were not designed to be stored for long 

periods, and much of the currently stored PPE has exceeded its manufacturer-assigned shelf life. 

Given the significant investment in the procurement and storage of PPE, along with projections of 

consumption during public health emergencies, discarding large quantities of potentially viable 

PPE is not an attractive option. Although shelf-life extension programs exist for other stockpiled 

medical assets, no such option is currently available for stockpiled PPE. This article posits 

stockpile quality assurance sampling plans as a mechanism through which shelf-life extension 

programs for stockpiled PPE may be achieved. We discuss some of the nuances that should be 

considered when developing a plan tailored to stockpiles and provide basic decision tools that may 

be used in the context of a quality assurance program tailored to stockpiled PPE. We also explore 

basic information by comparing and contrasting different sample size options.

STOCKPILES REPRESENT an important component of the United States’ public health 

infrastructure and are a strategic component of many federal, state, and local public health 

agencies.1,2 Throughout the United States, stockpiles were established to store large 

quantities of inventory to quickly supply healthcare and emergency response professionals 

responding to public health events. The placement of stockpiles in strategic locations 
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facilitates the rapid deployment of medical assets needed in countermeasure efforts. US 

stockpiles were established through federal funding and initiatives associated with the Public 

Health Security and Bioterrorism Preparedness and Response Act of 2002 (P.L. 107-188), 

which followed the terror attacks of 2001.1 This initiative enhanced appropriations for public 

health throughout the United States and facilitated the creation of stockpiles at all levels of 

government and in nongovernment healthcare settings.1

Since their widespread establishment in the early 2000s, the role of US stockpiles in the 

nation’s public health strategy and infrastructure has become institutionalized. Over time, in 

many instances, stored inventory has been expanded to include large quantities of personal 

protective equipment (PPE). PPE—including respirators, gloves, and surgical gowns—was 

introduced into US stockpiles primarily to protect healthcare professionals and first 

responders on the frontlines of treatment and containment.3 Large volumes of PPE were 

introduced due to utilization rates and shortages experienced by hospitals and healthcare 

providers during actual and simulated public health emergencies and pandemics.4-13

Much of the currently stockpiled PPE was acquired in response to high-consequence public 

health events such as severe acute respiratory syndrome (SARS) in 2003, 2005-2008 

pandemic influenza planning, the 2009-10 H1N1 influenza pandemic, and the 2014-15 

Ebola outbreak.2,4 Thus, due to the significant financial investments required for 

procurement and storage, which are often viewed as prohibitive, stockpiled PPE have, in 

some cases, been stored beyond their manufacturer-recommended shelf life.

Although shelf-life extension programs exist for other stockpiled medical assets, no such 

manufacturer-approved or government-sanctioned program is currently available for 

stockpiled PPE. Formal programs are in place to extend the manufacturer-assigned shelf life 

for stockpiled phar-maceuticals, since it has been empirically demonstrated that their actual 

shelf life can be much longer if they are stored properly.14,15 The motivation to develop and 

implement the pharmaceutical Shelf-Life Extension Program (SLEP) emerged during the 

mid-1980s when the military realized that extending the shelf life of medicines could help 

solve the supply and demand challenges they experienced.14 Since its adoption, SLEP has 

proved to be effective at reducing the logistical burden and replacement costs of valuable 

medical assets held in US stockpiles.14,15 An important contributor to the success of this 

program, however, was verification of product quality prior to shelf-life extensions being 

granted. In the context of stockpiled PPE, the paucity of research and initiatives related to 

quality assurance may be a hindrance in the development of a PPE-tailored SLEP.

In this article, we posit stockpile quality assurance sampling plans as a mechanism through 

which shelf-life extension programs for stockpiled PPE may be realized. In doing so, we 

discuss some of the nuances that a plan tailored to stockpiles should consider and provide 

basic decision tools that may be used in the context of a quality assurance program tailored 

to stockpiled PPE. We also compare and contrast different sample size options.
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Quality Assurance of Stockpiled PPE

An effective effort to develop a quality assurance initiative suitable to stockpiled PPE should 

consider the context. Stockpiles typically store numerous manufacturers’ models of similar 

PPE. For each model, a manufacturer assigns a single batch or lot number under the same set 

of manufacturing parameters during the same period. Therefore, PPE units with the same lot 

number share a consistent expiry date and may be expected to have relatively uniform 

quality. Stockpiles are likely to store numerous lots of various sizes for each model.

An adequate evaluation of PPE performance typically requires destructive testing in order to 

assess its protective properties. While testing samples composed of a large number of units 

will result in higher confidence in population estimates, depleting the stock of critical assets 

through excessive testing is not ideal. Further, given the associated expense of testing 

stockpiled PPE, a performance evaluation program should balance costs of testing and 

respirator attrition with a level of accuracy that is sufficient to ensure stockpiled PPE 

continue to meet regulatory guidelines.

Lot Quality Assurance Sampling

Lot quality assurance sampling (LQAS), a quality assurance process that may be most 

suitable for stockpiled PPE, originated in the manufacturing industry for quality control 

purposes and has been adopted in numerous quality assurance contexts since its inception.
16,17 LQAS uses a sample of items to estimate the quality of the lot instead of testing each of 

the items. LQAS is designed to facilitate decisions to accept or reject the entire lot based on 

the results of single or multiple samples, an approach that keeps sampling costs to a 

minimum.18 This approach is consistent with a stratified random sampling technique, but the 

samples are purposefully smaller than would be necessary to provide narrow confidence 

intervals for each stratum or lot.18,19 In contrast, LQAS enables lot quality decisions to be 

made based on probabilities.18,19 Given that stockpiles store a population of PPE items that 

can be delineated by numerous lots of distinct manufacturer models, LQAS’s approach of 

randomly sampling a small numbers of units in each stratum fits the context nicely. Figure 1 

depicts a hypothetical stockpile stratified random sampling design for N95 filtering face 

piece respirators using a quality assurance program grounded in the LQAS approach. This 

technique divides the entire population of N95 respirators into nonoverlapping 

subpopulations of lots that are expected to share quality commonalities. The manufacturer-

assigned lot number represents the homogenous level quality needed to characterize each 

stratum in a stockpile’s LQAS plan.

Sampling done at the lot level implies that the test results will generalize to the lot; however, 

LQAS is also designed to allow information at each level to be combined and inferences to 

be made at higher levels. For example, the estimates of quality for all units that share a 

common manufacturer model can be made by combining the results of samples 

corresponding to particular lots. Accurate estimates at the higher level can be obtained by 

weighting the results obtained at lower levels according to their relative percentage in the 

population.
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In a stratified random sampling approach context, the random selection of units from 

subpopulations ensures that the estimates of quality derived are unbiased. This means that, 

although the estimate from a single sample can be very different from the true quality level, 

the average of the sample proportions from repeated sampling should equal the true quality 

level that exists in the subpopulation. When units are not randomly selected from a 

population, bias in the estimated population parameter is likely. A potential challenge in 

using a stratified random sampling approach is the need to fully account for the inventory of 

PPE units in each stockpile. A true random process would require that each PPE item has an 

equal probability of being selected for sampling.

A potentially useful adaptation of the LQAS method is the adoption of “double sampling.” 

This approach divides the chosen sample size into 2 equal, smaller samples: n1 and n2. A 

random sample of size n1 is selected during the first stage. If the results of this sample are 

not conclusive, a second random sample is obtained (n2), and conclusions are based on the 

results of the combined sample (n1 + n2).18,19

Quality Evidence for Stockpiled PPE

In the context of a PPE-specific LQAS, focused information should be provided as evidence 

relating to its quality. Numerous consensus standards designed to evaluate the initial quality 

of the various types of PPE may be referenced as a starting point. Table 1 shows the tests 

that may be considered when assessing N95 filtering face piece respirators and gowns for 

their protective qualities.

For N95 respirators, the National Institute for Occupational Safety and Health’s (NIOSH) 

standard testing procedures (STPs) may be used to assess and compare the quality of 

stockpiled respirators to approved levels of initial quality. These standard testing procedures 

have an assigned level of quality for breathing resistance and filtration efficiency that can be 

used to assign a dichotomous quality attribute to each item. In its attribute form, each unit is 

categorized as either being defective or not in relation to the criteria in each standard. Any of 

the tests shown in Table 1 can result in this assigned attribute. The LQAS method requires 

that the test results corresponding to each attribute be tabulated in the form of the proportion 

of defective units in each sample. This sample proportion is then used to make decisions 

regarding the overall quality of the lot.

Decision Rationales in LQAS

The decision rationales center on the number of defective items that need to be found in a 

sample before the lot is deemed unacceptable; the rationales are grounded in the risks that 

stockpile managers are willing to accept.18 Implied in this framework is the premise that 

stockpile managers should first have some sense of the minimum proportion of defective 

units in a lot they are not willing to exceed. It can be assumed that the desired quality level 

in each stockpile lot is 0% failing units. Given that there is some probability of defect in new 

units, however, more realistic expectations that incorporate some level of defective units 

should be considered.

Once the desired level of quality is chosen, the acceptable level of risk of rejecting a lot that 

meets the desired quality level must be selected. Because rules governing attribute quality 
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data are based on the binomial distribution, the probability of obtaining an exact number of 

defective units in any sample size can be calculated, assuming that the true number of 

defective units in a lot was at a desired level.* The rejection risk, often identified as the type 

I error rate (α), is the probability of rejecting a lot that actually meets the quality level 

deemed appropriate by stockpile management. This level of risk is commonly set at 5%.20 In 

other words, a satisfactory lot would be incorrectly rejected less than 5% of the time. Figure 

2 depicts the expected probabilities and the cumulative probability for obtaining an exact 

number of defective units in a sample of 32 taken from a lot in which 15% of the PPE units 

were defective.

After some consideration is given to the desired level of quality and the rejection risk, units 

from the lot can be sampled and tested. The number of units that failed in the sample can 

then be used to determine the likelihood that the sample was taken from a lot that exceeded 

the proportion of defective units deemed acceptable. As depicted in Figure 2, if a rejection 

risk of 5% is selected, it may be concluded that a sample of 32 that resulted in 9 or more 

defective units was likely sampled from a lot that exceeded 15% defective units. If stockpile 

management determined 15% defective units in any given lot to be the maximum number 

they are willing to accept and set the rejection risk (α) to 5%, a finding of 9 or more defects 

in the sample indicates that the lot may be rejected or that a second round of testing may be 

helpful to obtain additional evidence.

In the LQAS method, the probabilities for finding a different number of defective units can 

be computed for any sample size and maximum number of defects that stockpile managers 

deem acceptable. Figure 2 shows the expected probabilities for only a single scenario in 

which a sample of 32 PPE items was taken from a lot with 15% defective units. In Table 2, 

probabilities are provided for obtaining a specific number of failures in sample sizes of 10, 

12, 18, 24, and 32, assuming the true number of defects in the lot were 15% and 5%.

Although not exhaustive of all possibilities, the table is meant to represent a simple tool that 

can be used to determine when the proportion of defects in a lot is likely to have exceeded 

the maximum number they are willing to accept. To illustrate, assume a stockpile 

management team deemed that a sample of 18 PPE items could be used to determine if the 

number of defects in a lot was likely greater or less than 5%. If 18 PPE items were randomly 

sampled from the lot and tested, and 3 of the 18 failed the performance test, the best guess 

estimate of the true lot fail rate is 3/18 or ~ 16.7%. However, we know that, based on 

sampling variability, 3 defects out of a sample of 18 PPE items can occur for a wide range of 

true lot quality. By consulting Table 2, it can be seen that samples of 18 PPE items from a lot 

in which 5% of the units are defective will result in 0, 1, or 2 failures a little over 94% of the 

time (ie, the sum of the probabilities of observing exactly 0, 1, and 2 failures). The 

likelihood of observing 3 failures out of 18 PPE items is relatively small—only 4.7% of the 

time, and a little over 5% of the total samples will result in 3 or more failures. Thus, while 

there is a possibility that this sample of 18 PPE units may have been taken from a lot with 

*P(x ∣ ρ) = n!
x!(n − x)! (1 − ρ)(n − x)ρx, where P(x∣ρ) = the probability of observing a given number of PPE items fail (x) in a 

sample of size (n) given the true lot fail rate (ρ).
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5% defective units, it is reasonable to conclude that the number of defects in the lot likely 

exceeds 5%. The rows for samples of 18 that resulted in 3 or more failures are shaded in 

Table 2, given that the sum of the expected probabilities for observing 3 or more failures out 

of a sample of 18 items from a lot with 5% defective units is around 5%. In Table 2, 5% 

cutoffs are highlighted for reference.

Sample Size Considerations

There are tradeoffs that need to be managed between the resources (time and money) 

available to administer the quality assurance program and the precision desired to draw 

quality conclusions. The goal of the LQAS method is to determine which lots have 

acceptable and unacceptable levels of quality. This allows for less emphasis to be placed on 

establishing population parameters within a desired level of precision—which requires large 

samples to derive narrow confidence intervals around the estimated population proportion of 

defective units.18 This nuance allows for relatively smaller sample sizes to be used and, in-

turn, reduces the waste experienced through destructive testing and the cost associated with 

testing stockpiled PPE.

Since a random sampling approach provides unbiased estimates of lot quality, eventually the 

average quality level revealed through repeated samples will equal the true quality level of 

the lot. However, the results of individual samples may be quite different from the true 

quality level in the lot. In the context of stockpile quality assurance sampling programs—

with a large number of lots, destructive testing, and limited resources—decisions regarding 

lot quality will likely be made based on a small number of samples. One area of interest, 

therefore, concerns the accuracy of different sample sizes in estimating the true quality level 

when the number of repeated samples is restricted. Although LQAS is a well-developed 

quality assurance technique, little empirical attention has been devoted to comparing and 

contrasting different sample sizes.

In order to compare and contrast different sample sizes considering an LQAS specific to 

stockpiled PPE, we ran a series of simple computer-based experiments and examined the 

sampling distribution of the proportion of defective units for different sample sizes taken 

from lots with known quality levels. Three different lots consisting of 100,000 PPE items 

were created. Each lot was simulated to have a different number of defective units—1%, 5%, 

and 15%. For example, in the 5% defective lot, 5% or 5,000 of the numbers were set to be 

ones—representing defective PPE items—and the remaining 95,000 (95%) were set to be 

zeros—nondefective PPE items. Once the 3 lots were generated, random samples of 5, 10, 

12, 18, 24, 32, 40, 50, and 100 units were selected from them; 75 distinct samples of each 

sample size with replacement were taken from each simulated lot. Although 75 repeated 

samples from the same lot far exceeds a realistic number of repeated samples, they were 

used to generate estimates of sample-to-sample variability that could be statistically 

compared and contrasted among the different sample sizes.

We initially examined quality estimate for each sample size, noting the number of repeated 

samples required to derive an accurate estimate of the true defective rate in the lot. The 

estimated number of defective units in the lot derived from samples 1 through 10 is 

presented in Table 3. The table shows that, after a single sample, the estimated proportion of 
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defects in each lot can be quite different from the actual true number for most of the sample 

sizes. In Table 3, the column corresponding to 2 repeated samples shows the average of the 

first and second fail rates. Further, the column corresponding to 3 repeated samples shows 

the average of the first, second, and third samples, and so on. These columns reveal that even 

after numerous repeated samples, the estimated number of defective units in the lot can be 

much different from the true proportion of defective units in the lot. This suggests that 

relying on a small number of repeated samples to estimate lot quality levels can be 

problematic with relatively smaller sample sizes.

These observations support the use of probabilities to determine when lot quality is likely to 

exceed acceptable levels included in the LQAS approach. However, the differences in the 

variability of quality estimates for each sample size across the number of repeated samples 

shown in Table 3 suggests that some sample sizes may be better suited for use in an LQAS 

approach specific to stockpiled PPE.

Corresponding to each sample size, Table 4 highlights the sample-to-sample variability that 

was observed across the entire set of 75 repeated samples. The range depicts how extreme 

the observed fail rates can get depending on sample size. For each of the simulated lots, a 

sample size of 5 resulted in the greatest range in the percent of defective units observed. In 

general, the range decreased as the sample size increased. Similarly, the sample-to-sample 

dispersion was greatest where the sample size was equal to 5 and generally decreased as the 

size of the random sample increased. The average percent of defective units across the 75 

samples and their standard deviations are shown in Figure 3. Consistent with the results 

presented in Table 4, Figure 3 shows that for each sample size, the mean percentage of 

defective items observed across the 75 samples was fairly accurate, while the standard 

deviation generally decreased as the sample size increased.

Next, the sample-to-sample variances were statistically compared and contrasted. This 

process allows us to group sample sizes that resulted in similar and different variances (ie, 

those not statistically different and those statistically different, respectively). The results of 

these pairwise comparisons are also reported in Table 4. Considering the results in each of 

the 3 simulated lots collectively, 3 distinct groups of sample sizes could be delineated based 

on similar characteristics in their variability: group 1 consisted of sample sizes of 10 and 12 

PPE units; group 2 consisted of 18, 24, and 32 units; and group 3 consisted of 40 and 50 

units. The magnitude of the benefits of group 3 were de-pendent on the true number of 

defective units in the lot and were maximized as this number increased. The sample sizes of 

5 and 100 displayed outcome characteristics that differed from the overall groupings and 

resulted in the greatest and least variability, respectively.

Conclusions

Throughout this article, we positioned quality assurance as a potential mechanism to manage 

aging PPE currently stored in US stockpiles. We demonstrated that relying on a small 

number of repeated samples to estimate lot quality levels can be problematic with relatively 

smaller sample sizes. In response, we posited LQAS as a quality assurance framework that 

has potential applicability in this context. The LQAS approach advocates the use of 
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probabilities to determine when lot quality is likely to have exceeded an acceptable, a priori, 

agreed upon level.

Grounded in the LQAS approach, Table 2 illustrates how the results of small samples can be 

assessed in relation to expected probabilities if the true lot quality was assumed. The tables 

represent a set of tools that can be used as a basis for decision making in an LQAS specific 

to stockpiled PPE. In Table 2 expectations for sample sizes of 10 to 32 and true lot fail rates 

of 5% and 15% were included. The approach used to develop Table 2, however, can be used 

to derive theoretical expectations for any sample size and any maximum number of defective 

units in a lot that is deemed acceptable.

Although LQAS is a well-developed quality assurance technique, little empirical attention 

has been devoted to comparing and contrasting different sample sizes. Thus, we also 

examined the question of sample size through a set of simple experiments. We found that 

sample sizes could be grouped together in terms of the variability with which they estimated 

the true number of defective units in a lot. Collectively, the findings related to sample size 

and the tools provided can be used by stockpile managers to begin the process of developing 

an LQAS specific to stockpiled PPE.

In order to maximize the prospect that the quality evidence accumulated by stockpiles can be 

used to inform a SLEP specific to stockpiled PPE, most of the parameters in the LQAS (eg, 

levels of risk assumed, sample size, schedules of repeated sampling, and the maximum 

number of defects in a lot deemed acceptable) should be subject to a formal consensus 

process overseen by representatives from PPE manufacturers, state and local departments of 

health, and privately held stockpiles. Manufacturer involvement in the design of a PPE-

specific LQAS for stockpiles may maximize the prospect of a formal shelf-life extension 

program.

In this formal consensus setting process, contingencies also need to be established that 

define steps to be taken in lieu of the quality evidence found. If quality evidence is found 

that suggests that the lot tested is acceptable, decision rationales should be in place to inform 

possible extension for products beyond the manufacturer’s labeled or recommend use date. 

PPE cannot provide expected protections indefinitely, thus decisions to hold product should 

reflect extensions based on quality evidence coupled with any expected degradation. As 

such, if quality evidence warrants a shelf-life extension for particular lots of PPE, effort 

should be made to use the older products and replenish them with new stock. Consistent 

with the currently implemented SLEP for pharmaceuticals, PPE products with granted 

extensions to the shelf life that are released to the public may require relabeling and/or 

communication strategies to ensure that the end users understand that the product may be 

used beyond its labeled expiration date. Conversely, if quality evidence is found that 

suggests that the lot tested is or may be un-acceptable, contingencies should include the 

option of discarding the lot or for a repeat testing to gather additional evidence.
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Figure 1. 
PPE sampling depiction for stockpiles based on the lot quality assurance sampling (LQAS) 

technique
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Figure 2. 
Probabilities and the cumulative probability of obtaining an exact number of defective units 

in a sample of 32 from a lot with 15% defective units

Note: The solid line in Figure 2 represents the probabilities (on the Y axis) that a sample of 

32 will result in a specific number of defective units (on the X axis) when taken from a lot in 

which 15% of the units are defective. The probability of obtaining 4 and 5 defective units in 

the sample is greatest—both being approximately 19%. The probability of finding 6 or more 

defective units in the sample decreases steadily. The dotted line is the sum of the 

probabilities from right to left in the figure. This line shows that there is nearly a 0% chance 

of obtaining a sample of 32 with 11 or more defective units if the true number of defects in 

the lot is 15%. The intersection between the horizontal (α = 0.05) and vertical dotted line (9 

defective units in the sample) indicates that obtaining 9 or more defective units in a sample 

of 32 from a lot with 15% will happen less than 5% of the time.

Yorio et al. Page 12

Health Secur. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Average and standard deviation of sample fail rates across 75 repeated samples
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Table 2.

Probability that a sample of n PPE units will result in a specific number of defective units when the true 

number of defective units in the lot is 15% and 5%

Sample
Size

Number
of

Failures

Probability (in %)
for a Lot with 15%

Defective Units

Probability (in %)
for a Lot with 5%

Defective Units

10 0 19.7 59.9

1 34.7 31.5

2 27.6 7.5

3 13.0 1.0

4 4.0 0.1

5 0.8 —

6 0.1 —

12 0 14.2 54.0

1 30.1 34.1

2 29.2 9.9

3 17.2 1.7

4 6.8 0.2

5 1.9 —

6 0.4 —

7 0.1 —

18 0 5.4 39.7

1 17.0 37.6

2 25.6 16.8

3 24.1 4.7

4 15.9 0.9

5 7.9 0.1

6 3.0 —

7 0.9 —

8 0.2 —

9 0.0 —

24 0 2.0 29.2

1 8.6 36.9

2 17.4 22.3

3 22.5 8.6

4 20.9 2.4

5 14.7 0.5

6 8.2 0.1

7 3.7 —

8 1.4 —

9 0.4 —
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Sample
Size

Number
of

Failures

Probability (in %)
for a Lot with 15%

Defective Units

Probability (in %)
for a Lot with 5%

Defective Units

10 0.1 —

32 0 0.6 19.4

1 3.1 32.6

2 8.5 26.6

3 15.0 14.0

4 19.0 5.3

5 19.0 1.6

6 15.1 0.4

7 9.9 0.1

8 5.5 —

9 2.6 —

10 1.0 —

11 0.4 —

12 0.1 —
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